当前位置: 首页 > 小学 > 五年级

五年级下册数学知识重点

  • 五年级
  • 2024-09-06

五年级下册数学知识重点?那么,五年级下册数学知识重点?一起来了解一下吧。

他抄袭我的啊!!!!!!!!!!!!!!!!!!!!!!!!
长方体的表面积=(长×宽+长×高+宽×高)×2 S=(ab+ah+bh)×2
长方体的体积=长×宽×高 V=abh
正方体的表面积=棱长×棱长×6S=6a²
正方体的体积=棱长×棱长×棱长V=a³
一个数的最小倍数和最大因数都是它本身。
一个数的因数的个数是有限的。
一个数的倍数的个数是无限的。
自然数中,是2的倍数的叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
个位上是0,2,4,6,8的数都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
1不是质数,也不是合数。
计量体积要用体积单位,常用的体积单位有立方厘米,立方分米和立方米,可以分别写成cm³,dm³和m³。
1dm³=1000cm³1m³=1000dm³
所能容纳物体的体积,通常叫做它们的容积。计量容积,一般就用体积单位。
计量液体的体积,常用容积单位升和毫升,也可以写成L和ml。
1L=1000ml1L=1dm³1ml=1cm³
分子比分母小的分数叫真分数。真分数小于1。
分子比分母大或分子和分母相等的分数叫做假分数。假分数大于1或等于1。
分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。
把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
同分母分数相加减,分母不变,只把分子相加减。
被除数
被除数÷ 除数=—————
除数
在一组数据中,出现次数最多的数,是这组数据的众数。
在一组数据中,众数可能不止一个,也可能没有众数

位置重要知识点整理
1、数对:一般由两个数组成。
作用:数对可以表示物体的位置,也可以确定物体的位置。 2、行和列的意义:竖排叫做列,横排叫做行。
3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或
字母括起来,再用逗号隔开。例如:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)
( 列 , 行 )
↓ ↓ 竖排叫列 横排叫行
(从左往右看)(从下往上看)
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。 如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上
望采纳

五年级知识点归纳总结
一单元图形变换
归纳重点知识
轴对称
轴对称的意义:把一个图形沿着某一条直线对折,如果它能够与另两个图形完全重合,那么说这两个图形成轴对称。这条直线就是这两个图形的对称轴。两个图形重合时互相重合的点叫做对应点;互相重合的线段叫做对应线段;互相重合的角叫做对应角。
轴对称的性质:对应点到对称轴的距离相等。
轴对称的特征:沿对称轴对折,对应点重合,对应线段重合,对应角重合。
选装
选装的意义:物体绕着某一点或轴运动,这种运动现象叫做选装。
图形旋转的方向:钟表指针的运动方向是顺时针方向;与钟表上指针的运动方向相反的方向是逆时针方向。
图形旋转的性质:图形绕着某一点旋转一定的度数,图形中的对应点、对应线段都旋转相应的度数,对应点到旋转点的距离相等,对应角相等。
图形旋转的特征:图形旋转后,形状、大小都没有发生变化,知识位置变了。
欣赏设计
设计图案的基本方法:利用平移、旋转和对称都可以设计简单而美丽的图案。
运用平移设计图案的方法:
选好基本图案。
确定平移方向。
确定平移距离。
画出平移后的图案。
运用旋转设计图案的方法:
选好基本图案。
确定旋转点。
确定旋转角度。
依次画出每次旋转后的图形。
运用对称设计图案的方法:
选好基本图案。
确定对称轴。
画出基本图案的对称图形。
二单元 因数和倍数
归纳重点知识
因数和倍数。
因数、倍数的意义:如果a×b=c(a、b、c都是不畏为0的整数),那么a、b就是c的因数,c就是a、b的倍数。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是其本身。
一个数的倍数是无限的,其中最小的倍数是它本身,没有最大的倍数。
因数和倍数的关系:因数和倍数是相互依存的概念,二者不能单独存在。
找一个是的因数的方法:
列乘法算式找。
列除法算式找。
找一个数的倍数的方法:
列乘法算式找一个数的倍数,就是用这个数依次与非零自然数相乘,所得的积就是这个数的倍数;
列除法算式找。
表示一个数的因数和倍数的方法:A、列举法;B、集合法。
2、3、5的倍数的特征
(1)2的倍数是特征:个位上是1,2,4,6,8的数都是2的倍数。
(2)奇数和偶数的意义:在自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。
(3)奇数、偶数是运算性质:
奇数±奇数=偶数 偶数±偶数=偶数奇数±偶数=奇数(大减小)
奇数×奇数=奇数奇数×偶数=偶数偶数×偶数=偶数
(4)5的倍数的特征:个位上是0或者5的数都是5的倍数。
(5)3的倍数的特征:一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。
3、质数和合数。
(1)质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质素和(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
(2)分解质因数:把一个合数用几个质数相乘的形式表现出来,就是分解质因数。
(3)质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的质因数。
(4)分解质因数的方法:A、枝状图式分解法; B、短除法。
三单元 长方体和正方体
归纳重点知识
长方体或正方体的特征。
长方体的特征:有6个面(6个面都是长方形或者4个面是长方形,2个面是正方形),相对的面完全相同;有12条棱,相对的棱长度相等:有8个顶点。
正方形的特征:正方形的6个面是完全相同的正方形;12条棱的长度相等;有8个顶点。
长方体上、宽、高的意义:相交于同一顶点的三条棱的长度分别叫做长方体的长、宽、高。一个长方体有4条长、4条宽、和4条高。
长方体或正方体的表面积。
表面积的意义:长方体或者正方体的6个面的总面积,叫做它的表面积。
长方体表面积的计算方法。
长方体表面积=(长×宽+上×高+宽×高)×2,用字母表示为S=2(ab+ah+bh);
长方体的表面积=长×宽×2+长×高×2+宽×高×2;用字母表示为:S=2ab+2ah+2bh.
正方体表面积的计算方法:正方体表面积=棱长×棱长×6,用字母表示为S=6a2
长方体和正方体的体积
体积的意义:物体所占的大小叫做物体的体积。
体积单位:立方米,立方分米,立方厘米;用字母表示为m3,dm3,cm3。
体积单位间的进率:1m3=1000dm3 1dm3=1000cm3
长方体和正方体体积计算公式。
长方体的体积=长×宽×高,用字母表示为S=abh
正方体的体积=棱长×棱长×棱长,用字母表示为S=a3。(其中a3读作a的立方,表示3个a相乘。)
长方体(或正方体)的体积=底面积*高,用字母表示为V=Sh
容积的意义:容器所能容纳物体的体积,通常叫做它们的容积。
容积的计算方法:长方体、正方体等规则容器容积的计算方法和体积的计算方法相同,但是要从容器里面测量长、宽、高。
容积的单位和容积单位间的进率:1L=1000ml
容积单位和体积单位之间的换算:1L=1dm3 1ml=1cm3
形状不规则物体体积的测量和计算方法:一般把这些物体的体积转化为可测量计算的水的体积。

位置重要知识点整理
1、数对:一般由两个数组成。
作用:数对可以表示物体的位置,也可以确定物体的位置。 2、行和列的意义:竖排叫做列,横排叫做行。
3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或
字母括起来,再用逗号隔开。例如:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)
( 列 , 行 )
↓ ↓ 竖排叫列 横排叫行
(从左往右看)(从下往上看)
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。 如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上
望采纳 谢谢

小学五年级数学下册复习教学知识点归纳总结,期末测试试题习题大全人教版五年级(下册)数学知识点一、图形的变换1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。二、因数与倍数1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数。4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数。个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2。一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4。三、长方体和正方体1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。3、长方体的棱长总和=(长+宽+高)×4 正方体的棱长总和=棱长×124、表面积:长方体或正方体6个面的总面积叫做它的表面积。5、长方体的表面积=(长×宽+长×高+宽×高)×2 S=(ab+ah+bh)×2正方体的表面积=棱长×棱长×6 用字母表示:S=6、表面积单位:平方厘米、平方分米、平方米 相邻单位的进率为1007、体积:物体所占空间的大小叫做物体的体积。8、长方体的体积=长×宽×高 用字母表示:V=abh 长=体积÷(宽×高) 宽=体积÷(长×高) 高=体积÷(长×宽) 正方体的体积=棱长×棱长×棱长 用字母表示:V= a×a×a9、体积单位:立方厘米、立方分米和立方米 相邻单位的进率为1000 10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高 V=Sh11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;把低级单位聚成高级单位,用低级单位数除以进率。12、容积:容器所能容纳物体的体积。13、容积单位:升和毫升(L和ml) 1L=1000ml 1L=1000立方厘米 1ml=1立方厘米 14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。四、分数的意义和性质1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b= (b≠0)。4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。由整数部分和分数部分组成的分数叫做带分数。5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。7、最大公因数:几个数共有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。8、互质数:公因数只有1的两个数叫做互质数。两个数互质的特殊判断方法:①1和任何大于1的自然数互质。②2和任何奇数都是互质数。③相邻的两个自然数是互质数。④相邻的两个奇数互质。⑤不相同的两个质数互质。⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。9、最简分数:分子和分母只有公因数1的分数叫做最简分数。10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。13、特殊情况下的最大公因数和最小公倍数:①成倍数关系的两个数,最大公因数就是较小的数,最小公倍数就是较大的数。②互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积。14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大。15、分数和小数的互化:小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;分数化小数,用分子除以分母,除不尽的按要求保留几位小数。五、分数的加法和减法1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。2、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算。3、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。六、打电话1、逐个法:所需时间最多;2、分组法:相对节约时间;3、同时进行法:最节约时间。1. 因为2×6=12,我们就说2和6是12的因数,12是2的倍数,也是6的倍数。不能单独说谁是倍数或因数2. 求一个数的因数,用乘法一对一对找,写的时候一般都是从小到大排列的3. 求一个数的倍数,用一个数去乘1、乘2、乘3、乘4……4. 一个数的最小因数是1,最大的因数是它本身,一个数的因数的个数是有限的。5. 一个数的最小的倍数是它本身,没有最大的倍数,一个数的倍数的个数是无限的。6. 个位上是 0,2,4,6,8的数,都是2的倍数,也是偶数。7. 自然数中,是2的倍数的数叫做偶数(0也是偶数)。不是2的倍数的数叫奇数。8. 个位上是0或者5的数,都是5的倍数。9. 个位是0的数,既是2的倍数,又是5的倍数。10. 一个数各位上的和是3的倍数,这个数就是3的倍数。11. 只有1和它本身两个因数的数叫做质数(或素数),除了1和它本身还有别的因数的数叫做合数。1既不是质数,也不是合数。12. 整数按因数的个数来分类:1,质数,合数。整数按是否是2的倍数来分类:奇数,偶数13. 将合数分解成几个质数相乘的形式就叫做分解质因数。分解质因数用短除法,把36分解质因数是?14. 最小的质数是2,最小合数是4,最小奇数是1,最小偶数是0,同时是2,5,3倍数的最小数是30,最小三位数是12015. 奇数加奇数等于偶数。奇数加偶数等于奇数。偶数加偶数等于偶数。16. a是c的倍数,b是c的倍数,那么a+b的和是c的倍数,c是a+b和的因数,a-b的差是c的倍数,c是a-b差的因数。17. 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。18. 轴对称图形特征:对应点到对称轴的距离相等,对应点连线垂直于对称轴19. 长方体有6个面。每个面都是长方形(可能有两个相对的面是正方形),相对的面大小相等(完全相同)。20. 长方体有12条棱,分为三组,相对的4条棱长度相等。21. 长方体有8个顶点。22. 相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高23. 正方体有6个面, 6个面都是正方形 ,6个面完全相等,正方体有12条棱, 12条棱长度都相等,正方体有8个顶点24. 长方体棱长之和:(长+宽+高)×4 长×4+宽×4+高×4 25. 正方体棱长之和:棱长×1226. 长方体(正方体)6个面的总面积,叫做它的表面积。27. 长方体表面积=(长×宽+宽×高+长×高)×2 或长方体表面积=长×宽×2+宽×高×2+长×高×228. 正方体表面积=棱长×棱长×629. 计量体积要用体积单位,常用的体积单位有立方厘米,立方分米,立方米,可以分别写成cm3 dm3 m330. 棱长是1cm的正方体,体积是1 cm3,棱长是1cm的正方体,体积是1 dm3,棱长是1cm的正方体,体积是1 m331. 长方体所含体积单位的数量就是长方体的体积。长方体的体积=长×宽×高,v=abh;正方体体积=棱长×棱长×棱长,v=a3 =a×a×a a3表示3个a相乘32. 相邻两个体积单位间的进率是1000,相邻两个面积单位间的进率是1000,相邻两个长度单位间的进率是10,1立方米=1000立方分米,1立方分米=1立方厘米,1升=1000毫升,1立方米=1000000立方厘米,计量容积一般用体积单位,计量液体的体积,用升和毫升33. 一个物体、一些物体等都可以看作一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”。34. 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。例如:表示把单位“1”平均分成7份,表示这样的3份。其中表示一份的数叫做分数单位。35. 米表示(1) 把5米看作单位“1”,把单位“1”平均分成8份,表示这样的1份,就是米,算式:5÷8=(米)(2) 把1米看作单位“1”,把单位“1”平均分成8份,表示这样的5份,就是米,算式:1÷8=(米),5个米就是米36. 当整数除法得不到整数的商时,可以用分数表示除法的商。在用分数表示整数除法的商时,分数的分子相当于除法的被除数,分数的分母相当于除法的除数,除号相当于分数中的分数线。(除数不能为0)区别:分数是一种数,除法是一种运算37. 分子比分母小的分数叫真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于或等于1。38. 带分数包括整数部分和分数部分。假分数化成带分数,用分子除以分母所得的商作为带分数的整数部分,余数作为分子,分母不变。带分数化成假分数时,用整数部分和分母相乘再加分子所得结果作分子,分母不变。39. A是B的几分之几?用A÷B40. 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。41. 几个数公有的因数,叫做这几个数的公因数。其中最大的一个叫做这几个数的最大公因数。通常把每个数分解质因数,把它们所有的公有质因数相乘,来求最大公因数。42. 如果两个数的公因数只有1,这两个数是互质数。两个连续自然数;两个质数;1和其他自然数一定是互质数。43. 分子和分母只有公因数1的分数叫做最简分数。把一个分数化成和它相等,但分子分母比较小的分数,叫做约分。44. 几个数公有的倍数,叫做这几个数的公倍数。其中最小的一个叫做这几个数的最小公倍数。通常把每个数分解质因数,把它们所有的公有质因数和独有质因数相乘,来求最小公倍数。45. 把异分母分数分别化成和原来分数相等的同分母分数(公分母),叫做通分。46. 求三个数的最大公因数和最小公倍数时,可以先求其中两个数的最大公因数和最小公倍数,用求出的最大公因数和最小公倍数再与第三个数求最大公因数和最小公倍数。47. 如果两个数是倍数关系,那么两个数的最大公因数是较小数,最小公倍数是较大数。48. 如果两个数公因数只有1,那么这两个数的最大公因数是1,最小公倍数是它们的乘积。49. 两个数公因数只有1的几种特殊情况:1和其他自然数,相邻两个自然数,两个质数。50. 分数化成小数:用分子除以分母化成小数。小数化成分数:把小数写成分母是10,100,1000……的分数,然后再化成最简分数。

以上就是五年级下册数学知识重点的全部内容,..。

猜你喜欢