当前位置: 首页 > 小学 > 五年级

五年级下册奥数竞赛题,小学五年级奥数竞赛题及答案

  • 五年级
  • 2025-10-20

五年级下册奥数竞赛题?3、小明从家到学校的路程是540米,小明上学要走9分钟,回家时比上学少用3分钟,那么小明往返一趟平均每分钟走()米。4、五年级开展数学竞赛,一共20题,答对一题得7分,答错一题扣4分,王磊得74分,他答对了()题。5、松鼠妈妈采松子,晴天每天可采24个,雨天每天可采16个,他一连几天一共采了168个松子,那么,五年级下册奥数竞赛题?一起来了解一下吧。

5年级奥数竞赛真题及答案

10名选手参加象棋比赛,每两名选手间都要比赛一次。比赛结果表明:选手们所得分数各不相同,前两名选手都没输过,前两名的总分比第三名多20分,第四名得分与后四名所得总分相等。问:前六名的分数各为多少?(胜得2分,和得1分,输得0分)

解答:一至六名的分数依次为17、16、13、12、11、9分。每人要赛9盘,前两名都没输过,分数又不同, 所以第一名不大于17分,第二名不大于16分。后四名之间赛6盘,至少得12分,所以第四名不小于12分。再由前两名的总分比第三名多20分,推知第三名 13分,第四名12分,第一名17分,第二名16分。最后,由共赛45盘,总分为90分,前四名共58分,后四名共12分知,五六名共20分,所以第五名 11分,第六名9分。

五年级奥数必考50道题

【 #小学奥数#导语】在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过表面,抓住问题的实质,将问题转化成自己熟悉的问题去解答。转化的类型有条件转化、问题转化、关系转化、图形转化等。 以下是 考 网整理的《五年级小学生奥数题5篇》相关资料,希望帮助到您。

1.五年级小学生奥数题

1、甲、乙、丙三人赛跑,同时从A地出发向B地跑,当甲跑到终点时,乙离B还有30米,丙离B还有70米;当乙跑到终点时,丙离B还有45米。问:A、B相距多少米?

解答:

乙跑最后30米时,丙跑了(70-45)=25米,所以乙、丙的速度比是30:25=6:5。因为乙到终点时比丙多跑了45米,所以A、B相距

45÷(1-5/6)=270米。

2、商店进了一批钢笔,用零售价10元卖出20支与用零售价11元卖出15支的利润相同。那么每支钢笔的进货价是多少元?

解答:10×20-11×15=35(元),这正好是20-15=5支钢笔的进货价,所以每支钢笔的进货价为35÷5=7(元)。

3、五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。

人教版五年级下册数学奥数题

七 奇数与偶数(A)

年级班姓名得分

一、填空题

1. 2,4,6,8,……是连续的偶数,若五个连续的偶数的和是320,这五个数中最小的一个是______.

2. 有两个质数,它们的和是小于100的奇数,并且是17的倍数.这两个质数是_____.

3. 100个自然数,它们的和是10000,在这些数里,奇数的个数比偶数的个数多,那么,这些数里至多有_____个偶数.

4. 右图是一张靶纸,靶纸上的1、3、5、7、9表示射中该靶区的分数.甲说:我打了六枪,每枪都中靶得分,共得了27分.乙说:我打了3枪,每枪都中靶得分,共得了27分.

1 35 7 9

已知甲、乙两人中有一人说的是真话,那么说假话的是_____.

5. 一只电动老鼠从右上图的A点出发,沿格线奔跑,并且每到一个格点不是向左转就是向右转.当这只电动老鼠又回到A点时,甲说它共转了81次弯,乙说它共转了82次弯.如果甲、乙二人有一人说对了,那么谁正确?

A

6. 一次数学考试共有20道题,规定答对一题得2分,答错一题扣1分,未答的题不计分.考试结束后,小明共得23分.他想知道自己做错了几道题,但只记得未答的题的数目是个偶数.请你帮助小明计算一下,他答错了_____道题.

7. 有一批文章共15篇,各篇文章的页数分别是1页、2页、3页……14页和15页的稿纸,如果将这些文章按某种次序装订成册,并统一编上页码,那么每篇文章的第一页是奇数页码的文章最多有_____篇.

8. 一本书中间的某一张被撕掉了,余下的各页码数之和是1133,这本书有_____页,撕掉的是第_____页和第_____页.

9. 有8只盒子,每只盒内放有同一种笔.8只盒子所装笔的支数分别为17支、23支、33支、36支、38支、42支、49支、51支.在这些笔中,圆珠笔的支数是钢笔的支数的2倍,钢笔支数是铅笔支数的 ,只有一只盒里放的水彩笔.这盒水彩笔共有_____支.

10. 某次数学竞赛准备了35支铅笔作为奖品发给一、二、三等奖的学生,原计划一等奖每人发给6支,二等奖每人发给3支,三等奖每人发给2支,后来改为一等将每人发13支,二等奖每人发4支,三等奖每人发1支.那么获二等奖的有_____人.

二、解答题

11.如下图,从0点起每隔3米种一棵树.如果把3块“爱护树木”的小木牌分别挂在3棵树上,那么不管怎么挂,至少有两棵挂牌树之间的距离是偶数(以米为单位).试说明理由.

12. 小地球仪上赤道大圆与过南北极的某大圆相交于A、B两点.有黑、白二蚁从A点同时出发分别沿着这两个大圆爬行.黑蚁爬赤道大圆一周要10秒钟,白蚁爬过南北极的大圆一周要8秒钟.问:在10分钟内黑、白二蚁在B点相遇几次?为什么?

13.如右图所示,一个圆周上有9个位置,依次编为1~9号.现在有一个小球在1号位置上,第一天顺时针前进10个位置,第二天逆时针前进14个位置.以后,第奇数天与第一天相同,顺时针前进10个位置,第偶数天与第二天相同,逆时针前进14个位置.问:至少经过多少天,小球又回到1号位置.

14. 在右图中的每个 中填入一个自然数(可以相同),使得任意两个相邻的 中的数字之差(大数减小数),恰好等于它们之间所标的数字.能否办到?为什么?

———————————————答 案——————————————————————

1.60

这五个连续偶数的第三个(即中间的那一个)偶数是320 5=64.所以,最小的偶数是60.

2.2,83

因为两个质数的和是奇数,所以必有一个是2.小于100的17的奇数倍有17,51和85三个,17,51与2的差都不是质数,所以另一个质数是85-2=83.

3.48

由于100个自然数的和是10000,即100个自然数中必须有偶数个奇数,又由于奇数比偶数多,因此偶数最多只有48个.

4.甲

由于分数都是奇数,6个奇数之和为偶数,不可能是奇数27,所以说假话的是甲.

5.甲

因为老鼠遇到格点必须转弯,所以经过多少格点就转了多少次弯.如右图所示,老鼠从黑点出发,到达任何一个黑点都是转奇数次弯,所以甲正确.

6.3

小明做错的题的数目一定是奇数个,若是做错1个,则应做对12个才会得12 2-1=23分,这样小明共做13个题,未做的题的个数7不是偶数;若是做错3个,则应做对13个才能得13 2-3=23分,这样未答的题是4个,恰为偶数个.此外小明不可能做错5个或5个以上的题.故他做错的题有3个.

7.11

根据奇数+偶数=奇数的性质,先编排偶数页的文章(2页,4页,…,14页),这样共有7篇文章的第一页都是奇数页码.

然后,编排奇数页的文章(1页,3页,…,15页),根据奇数+奇数=偶数的性质,这样编排,就又有4篇文章的第一页都是奇数页码.

所以,每篇文章的第一页是奇数页码的文章最多是7+4=11(篇).

8.48,21,22

设这本书的页码是从1到n的自然数,正确的和应该是

1+2+…+n= ( n+1)

由题意可知, ( n+1)>1133

由估算,当n=48时, ( n+1)=48 49=1176,1176-1133=43.根据书页的页码编排,被撕一张的页码应是奇、偶,其和是奇数,43=21+22.所以,这本书有48页,被撕的一张是第21页和第22页.

9.49

依题意知,若钢笔为1份,则圆珠笔为2份,铅笔为3份,也就是说,这三种笔的总支数一定是6的倍数,即能同时被2和3整除.又因为8只盒子中有3只盒子装的笔的支数是偶数,5只盒子装的笔的支数是奇数,根据偶数+奇数=奇数,可知装有铅笔、圆珠笔、钢笔的7只盒子一定有3只盒子里装有偶数支笔,4支盒子里面装有奇数支笔,装有水彩笔的盒子一定装有奇数支笔.把8只盒子所装笔支数的数字分别加起来:

1+7+2+3+3+3+3+6+3+8+4+2+4+9+5+1=64

因为64-(4+9)=51正好能被3整除,所以装有水彩笔的盒子共装有49支.

10.3

首先根据“后来改为一等奖每人发13支”,可以确定获一等奖的人数不大于3.否则仅一等奖就要发不小于39支铅笔,已超过35支,这是不可能的.其次分别考虑获一等奖有2人或者1人的情况:

当获一等奖有2人时,那么按原计划发二、三等奖的铅笔数应该是35-6 2=23,按改变后发二、三等奖的铅笔数应该是35-13 2=9.因为23是奇数,按原计划发三等奖每人2支铅笔,则发三等奖的铅笔总数必为偶数,所以发二等奖的铅笔总数只能是奇数,于是获二等奖的人数也必是奇数.又根据改变后“二等奖每人发4支”,可以确定获二等奖的人数仅1人(否则仅二等奖就要发超过9支铅笔了),经检验,这是不可能的,这就是说,获一等奖不会是2人.

当获一等奖有1人时,那么按原计划发二、三等奖的铅笔数应是35-6=29,按改变后发二、三等奖的铅笔数应是35-13=22.因为29仍是奇数,类似前种情况的讨论,可以确定获二等奖的人数必定是奇数.又根据改变后“二等奖每人发4支”,且总数不超过22支,我们能够推知二等奖人数不会超过5,经检验,只有获二等奖是3人才符合题目要求.

11.相距最远的两块木牌的距离,等于它们分别与中间一块木牌的距离之和.如果三块木牌间两两距离都是奇数,就会出现“奇+奇=奇”,这显然不成立,所以必有两块木牌的距离是偶数.

12.相遇0次.(黑、白二蚁永不能在B点相遇)

黑蚁爬半圆需要5秒钟,白蚁爬半圆需要4秒钟,黑、白二蚁同时从A点出发,要在B点相遇,必须满足两个条件:①黑、白二蚁爬行时间相同,②在此时间内二蚁爬行奇数个半圆.但黑蚁爬行奇数个半圆要用奇数秒(5 奇数),白蚁爬行奇数个半圆要用偶数秒(4 奇数),奇数与偶数不能相等.所以黑、白二蚁永远不能在B点相遇.

13.顺时针前进10个位置,相当于顺时针前进1个位置;逆时针前进14个位置,相当于顺时针前进18-14=4(个)位置.所以原题相当于:顺时针每天1个位置,4个位置交替前进,直到前进的位置个数是9的倍数为止.

偶数天依次前进的位置个数:

5,10,15,20,25,30,35,40,……

奇数天依次前进的位置个数:

1,6,11,16,21,26,31,36 ,41,……

第15天前进36个位置,36天是9的倍数,所以第15天又回到1号位置。

五上奥数必考50道题

第二届华博士小学数学奥林匹克网上竞赛试题及答案

(五年级)

(红色为正确答案)

选择正确的答案:

(1)在下列算式中加一对括号后,算式的最大值是( )。

7 × 9 + 12 ÷ 3 - 2

A 75 B 147 C 89 D 90

(2)已知三角形的内角和是180度.一个五边形的内角和应是( )度.

A 500B 540 C 360 D 480

(3)甲乙两个数的和是15.95,甲数的小数点向右移动一位就等于乙数,那么

甲数是( ).

A 1.75 B 1.47 C 1.45 D 1.95

(4)一个顾客买了6瓶酒,每瓶付1.3元,退空瓶时,售货员说,每只空瓶钱比酒钱

少1.1元,顾客应退回的瓶钱是( )元.

A 0.8 B 0.4 C 0.6 D 1.2

(5)两数相除得3余10,被除数,除数,商与余数之和是143,这两个数分别是()

和( ). A 30和100 B 110和30 C 100和34 D 95和40

(6) 今年爸爸和女儿的年龄和是44岁,10年后,爸爸的年龄是女儿的3倍,今年女儿是多少岁?A16B11C9D10

(7)一个两位数除250,余数是37,这样的两位数是().

A 17B38C 71 D 91

(8)把一条细绳先对折,再把它所折成相等的三折,接着再对折,然后用剪刀在折过三次的绳中间剪一刀,那么这条绳被剪成()段.

A13B12 C 14 D 15

(9) 把两个表面积都是6平方厘米的正方体拼成一个长方体,这个长方体的表面积( ). A 12 B 18 C10D11

(10)一昼夜钟面上的时针和分针重叠()次.

A 23B 12 C 20 D13

(11)某车间四月份实际生产机器76台,其中原计划生产的台数比超产台数多60台,

求四月份比原计划超产多少台机器?

A 16B 8 C 10 D 12

(12)一块红砖长25厘米,宽15厘米,用这样的红砖拼成一个正方形最少需要多少块?

A 15B 12 C 75 D 8

(13)图中ABCD是长方形,已知AB=4厘米,BC=6厘米,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED=?厘米

A 9 B 7C 8D 6

(14)一天,甲乙丙三人去郊外钓鱼已知甲比乙多钓6条,丙钓的是甲的2 倍,比乙多钓22条,问他们三人一共钓了多少条?

A 48B 50 C 52D 58

(15)张师傅以1元钱4个苹果的价格买进苹果若干个,又以2元钱5个苹果有价格把这些苹果卖出,如果他要赚得15元钱的利润,那么他必须卖出苹果多少个?

A 10B 100C 20D 160

答案:CBCCA

DCACA

BADDB

小学五年级奥数竞赛试题

有一批布若干米。做一套男装需布3.4米,做一套女装需布3.2米。若给男同学每人做一套服装则少布6.4米,若给女同学每人做一套服装则余2米。已知男同学比女同学多1人。一批布有78.26米?男、女学生分别有26人、25人。

"123456789101112......484950"是一个很多位数,从中划去80个数字,使剩下的数字(先后顺序不变)组成最大的多位数。这个最大多位数的数字和是73。

计算:0.02+0.04+0.06+0.08+……+19.94+19.96+19.98=199.9。

1×1+2×2+3×3+……1997×1997+1998×1998的个位数字是6。

一个两位数,在它的两个数字中间添一个0,就比原来的数多630,这样的两位数共有8个。

现有壹元的人民币4张,贰元的人民币2张,拾元的人民币3张,如果从中至少取1张,至多取9张,那么,共可以配成44种不同的钱数。

一组四位数,每一个数的数字均不为0,并且互不相同,但每个数所有的数字和都为12,将所有这样的四位数从小到大依次排列,第25个数是1236。

大猴给小猴分桃子,如果每只小猴分8个桃子,还剩10桃子;如果每只小猴分9个桃子,那么有一只小猴就分不足9个,但仍可以分到桃子。

以上就是五年级下册奥数竞赛题的全部内容,五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。问:至少有几名学生的成绩相同?答案与解析:【分析】120÷2=60,90÷2=45,每两棵树之间的距离是它们的公约数。(120,60,90,45)=15,内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。

猜你喜欢