五年级下册的公式?五年级下册数学公式是如下:一、长方形的周长=(长+宽)×2 ,C=(a+b)×2 二、正方形的周长=边长×4, C=4a 三、长方形的面积=长×宽 ,S=ab 四、正方形的面积=边长×边长 ,S=a.a= a^2 五、三角形的面积=底×高÷2 ,S=ah÷2 六、平行四边形的面积=底×高, S=ah 七、那么,五年级下册的公式?一起来了解一下吧。
因数与倍数
五年级下册数学公式
1、 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数= 1倍数
3、 速度×时间=路程路程÷速度=时间路程÷时间=速度
4、 单价×数量=总价总价÷单价=数量总价÷数量=单价
5、 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6、 加数+加数=和和-一个加数=另一个加数
7、 被减数-减数=差被减数-差=减数差+减数=被减数
8、 因数×因数=积积÷一个因数=另一个因数
9、 被除数÷除数=商被除数÷商=除数商×除数=被除数
小学数学图形计算公式
1、正方形:C周长 S面积 a边长 周长=边长×4C=4a 面积=边长×边长S=a×a
2、正方体:V:体积 a:棱长表面积=棱长×棱长×6S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3、长方形:
C周长 S面积 a边长周长=(长+宽)×2C=2(a+b) 面积=长×宽 S=ab
4、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5、三角形
s面积 a底 h高面积=底×高÷2s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6、平行四边形:s面积 a底 h高面积=底×高 s=ah
7、梯形:s面积 a上底 b下底 h高面积=(上底+下底)×高÷2 s=(a+b)×h÷2
8 圆形:S面C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径 C=∏d=2∏r
(2)面积=半径×半径×∏
9、圆柱体:v体积h:高s:底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10、圆锥体:v体积 h高 s底面积 r底面半径体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1、非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2、封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
长度单位换算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000 千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年 1年=12月
大月(31天)有: 1\3\5\7\8\10\12月
小月(30天)的有: 4\6\9\11月
平年 2月28天, 闰年 2月29天
平年全年365天,闰年全年366天
1日=24小时1小时=60分
1分=60秒1小时=3600秒
小学数学几何形体周长 面积 体积计算公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2
8、直径=半径×2 d=2r半径=直径÷2r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径
在数学的学习过程中,掌握正确的公式和定律是至关重要的。以下是一些基本的数学公式,涵盖了乘法、除法、减法以及方程解法的基本定律:
乘法交换律:a×b = b×a;乘法结合律:a×b×c = a×(b×c);乘法分配律:a×c + b×c=c×(a + b) 和 a×c - b×c=c×(a - b)。
除法性质:a÷b÷c = a÷(b×c)。
减法性质:a –b - c = a - (b + c)。
解方程定律:加数 +加数= 和;加数= 和–另一个加数;被减数–减数= 差;被减数=差+减数;减数=被减数–差;因数×因数= 积;因数= 积÷另一个因数;被除数÷除数= 商;被除数=商×除数;除数=被除数÷商。
行程问题中,路程=速度×时间;时间=路程÷速度;速度=路程÷时间。
相遇问题公式:相遇路程=(甲速度+乙速度)×相遇时间;相遇时间=相遇路程÷(甲速度+乙速度);甲速度=相遇路程÷相遇时间–乙速度;乙速度=相遇路程÷相遇时间–甲速度。
工程问题涉及:工作总量=工作效率×工作时间;工作时间=工作总量÷工作效率;工作效率=工作总量÷工作时间;工作总量=计划工作效率×计划工作时间;工作总量=实际工作效率×实际工作时间;实际工作时间=工作总量÷实际工作效率;实际工作效率=工作总量÷实际工作时间。
五年级下册数学公式是如下:
一、长方形的周长=(长+宽)×2 ,C=(a+b)×2
二、正方形的周长=边长×4, C=4a
三、长方形的面积=长×宽 ,S=ab
四、正方形的面积=边长×边长 ,S=a.a=a^2
五、三角形的面积=底×高÷2 ,S=ah÷2
六、平行四边形的面积=底×高, S=ah
七、梯形的面积=(上底+下底)×高÷2, S=(a+b)h÷2
八、圆的周长=圆周率×直径=圆周率×半径×2, c=πd=2πr
九、圆的面积=圆周率×半径×半径πr ^2
1、 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数= 1倍数
3、 速度×时间=路程路程÷速度=时间路程÷时间=速度
4、 单价×数量=总价总价÷单价=数量总价÷数量=单价
5、 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6、 加数+加数=和和-一个加数=另一个加数
7、 被减数-减数=差被减数-差=减数差+减数=被减数
8、 因数×因数=积积÷一个因数=另一个因数
9、 被除数÷除数=商被除数÷商=除数商×除数=被除数
小学数学图形计算公式
1、正方形:C周长 S面积 a边长 周长=边长×4C=4a 面积=边长×边长S=a×a
2、正方体:V:体积 a:棱长表面积=棱长×棱长×6S表=a×a×6
体积=棱长×棱长×棱长 V=a×a×a
3、长方形:
C周长 S面积 a边长周长=(长+宽)×2C=2(a+b) 面积=长×宽 S=ab
4、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5、三角形
s面积 a底 h高面积=底×高÷2s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6、平行四边形:s面积 a底 h高面积=底×高 s=ah
7、梯形:s面积 a上底 b下底 h高面积=(上底+下底)×高÷2 s=(a+b)×h÷2
8 圆形:S面C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径 C=∏d=2∏r
(2)面积=半径×半径×∏
9、圆柱体:v体积h:高s:底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10、圆锥体:v体积 h高 s底面积 r底面半径体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1、非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2、封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
长度单位换算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000 千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年 1年=12月
大月(31天)有: 1\3\5\7\8\10\12月
小月(30天)的有: 4\6\9\11月
平年 2月28天, 闰年 2月29天
平年全年365天,闰年全年366天
1日=24小时1小时=60分
1分=60秒1小时=3600秒
小学数学几何形体周长 面积 体积计算公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2
8、直径=半径×2 d=2r半径=直径÷2r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径
常见的初中数学公式
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12 两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理三角形两边的和大于第三边
16 推论三角形两边的差小于第三边
17 三角形内角和定理三角形三个内角的和等于180°
18 推论1直角三角形的两个锐角互余
19 推论2三角形的一个外角等于和它不相邻的两个内角的和
20 推论3三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22 边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS)有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形
全等
27 定理1在角的平分线上的点到这个角的两边的距离相等
28 定理2到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角
所对的边也相等(等角对等边)
35 推论1三个角都相等的三角形是等边三角形
36 推论2有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的
一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1关于某条直线对称的两个图形是全等形
43 定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直
平分线
44 定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,
那么交点在对称轴上
45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两
个图形关于这条直线对称
46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,
即a^2+b^2=c^2
47 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,
那么这个三角形是直角三角形
48 定理四边形的内角和等于360°
49 四边形的外角和等于360°
50 多边形内角和定理n边形的内角的和等于(n-2)×180°
51 推论任意多边的外角和等于360°
52 平行四边形性质定理 1 平行四边形的对角相等
53 平行四边形性质定理 2 平行四边形的对边相等
54 推论 夹在两条平行线间的平行线段相等
55 平行四边形性质定理 3平行四边形的对角线互相平分
56 平行四边形判定定理 1两组对角分别相等的四边形是平行四边形
57 平行四边形判定定理 2两组对边分别相等的四边形是平行四边形
58 平行四边形判定定理 3对角线互相平分的四边形是平行四边形
59 平行四边形判定定理 4一组对边平行相等的四边形是平行四边形
60 矩形性质定理 1矩形的四个角都是直角
61 矩形性质定理 2矩形的对角线相等
62 矩形判定定理 1有三个角是直角的四边形是矩形
63 矩形判定定理 2对角线相等的平行四边形是矩形
64 菱形性质定理 1菱形的四条边都相等
65 菱形性质定理 2菱形的对角线互相垂直,并且每一条对角线平分一组对角
66 菱形面积=对角线乘积的一半,即 S=(a×b)÷2
67 菱形判定定理 1 四边都相等的四边形是菱形
68 菱形判定定理 2 对角线互相垂直的平行四边形是菱形
69 正方形性质定理 1 正方形的四个角都是直角,四条边都相等
70 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每
条对角线平分一组对角
71 定理1关于中心对称的两个图形是全等的
72 定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被
对称中心平分
73 逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,
那么这两个图形关于这一点对称
74 等腰梯形性质定理等腰梯形在同一底上的两个角相等
75 等腰梯形的两条对角线相等
76 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
77 对角线相等的梯形是等腰梯形
78 平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,
那么在其他直线上截得的线段也相等
79 推论 1经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论 2经过三角形一边的中点与另一边平行的直线,必平分第三边
81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半
82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半
L=(a+b)÷2S=L×h
83 (1)比例的基本性质如果 a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84 (2)合比性质如果 a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质如果 a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)
/(b+d+…+n)=a/b
86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成
比例
87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得
的应线段成比例
88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线
段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的
三边与原三角形三边对应成比例
90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,
所构成的三角形与原三角形相似
91 相似三角形判定定理 1两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理 2两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理 3三边对应成比例,两三角形相似(SSS)
95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的
斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理 1相似三角形对应高的比,对应中线的比与对应角平分线的
比都等于相似比
97 性质定理 2相似三角形周长的比等于相似比
98 性质定理 3相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的
余角的正弦值
100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的
余角的正切值
101 圆是定点的距离等于定长的点的集合
102 圆的内部可以看作是圆心的距离小于半径的点的集合
103 圆的外部可以看作是圆心的距离大于半径的点的集合
104 同圆或等圆的半径相等
105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107 到已知角的两边距离相等的点的轨迹,是这个角的平分线
108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等
的一条直线
109 定理不在同一直线上的三点确定一个圆。
数学公式在五年级的数学学习中起着重要的作用。我们已经学习了一些基本的概念和公式。例如,奇数可以通过2加上一个质数得到,或者通过一个偶数加上一个奇数得到。而偶数则可以通过两个偶数相加,或者两个奇数相加来得到。长方体的棱长总和可以通过长、宽、高的4倍来计算,表面积则是长乘宽加长乘高加宽乘高再乘以2,体积则通过长乘宽乘高,或者底面积乘高,又或者横截面乘长来计算。正方体的棱长总和则是棱长乘以12,表面积为棱长乘棱长再乘以6,体积则是棱长乘棱长乘棱长。
这些公式帮助我们理解和解决实际问题。比如,当我们需要计算一个房间的墙面面积时,我们可以使用长乘宽加长乘高加宽乘高再乘以2的公式。如果我们要计算一个正方体盒子的体积,就可以直接使用棱长乘棱长乘棱长的公式。掌握这些公式,可以帮助我们在日常生活中更好地理解和解决问题。
奇数和偶数的概念在数学中尤为重要。通过学习奇数和偶数的定义,我们能够更好地理解数字之间的关系。例如,奇数加上偶数总是会得到一个奇数,而两个奇数相加则会得到一个偶数。这些规律不仅有助于我们理解数字的性质,还能帮助我们在数学计算中更加准确。
长方体和正方体的公式同样十分重要。长方体的棱长总和、表面积和体积公式,以及正方体的棱长总和、表面积和体积公式,都是我们在解决实际问题时不可或缺的工具。
以上就是五年级下册的公式的全部内容,9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式 1、正方形:C周长 S面积 a边长 周长=边长×4C=4a 面积=边长×边长S=a×a 2、正方体:V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3、内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。